Cubical Marching Squares: Adaptive Feature Preserving Surface Extraction from Volume Data
نویسندگان
چکیده
In this paper, we present a new method for surface extraction from volume data which preserves sharp features, maintains consistent topology and generates surface adaptively without crack patching. Our approach is based on the marching cubes algorithm, a popular method to convert volumetric data to polygonal meshes. The original marching cubes algorithm suffers from problems of topological inconsistency, cracks in adaptive resolution and inability to preserve sharp features. Most of marching cubes variants only focus on one or some of these problems. Although these techniques could be combined to solve these problems altogether, such a combination might not be straightforward. Moreover, some feature-preserving variants introduce an additional problem, inter-cell dependency. Our method provides a relatively simple and easy-to-implement solution to all these problems by converting 3D marching cubes into 2D cubical marching squares, resolving topology ambiguity with sharp features and eliminating inter-cell dependency by sampling face sharp features. We compare our algorithm with other marching cubes variants and demonstrate its effectiveness on various applications.
منابع مشابه
Adaptive Multiresolution and Quality 3D Meshing from Imaging Data
This paper presents an algorithm to extract adaptive and quality 3D meshes directly from volumetric imaging data primarily Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). The extracted tetrahedral and hexahedral meshes are extensively used in the Finite Element Method (FEM). Our comprehensive approach combines bilateral and anisotropic (feature specific) diffusion filtering, with...
متن کاملTopology Preserving Surface Extraction Using Star-shaped Subdivision
We address the problem of computing a topology preserving isosurface from a volumetric grid using Marching Cubes for geometry processing applications. We present a novel topology preserving subdivision algorithm to generate an adaptive grid. Our algorithm ensures that every grid cell satisfies two local geometric properties: a complex cell property and a star-shaped property. We show that these...
متن کاملAdaptative Cubical Grid for Isosurface Extraction
This work proposes a variation on the Marching Cubes algorithm, where the goal is to represent implicit functions with higher resolution and better graphical quality using the same grid size. The proposed algorithm displaces the vertices of the cubes iteratively until the stop condition is achieved. After each iteration, the difference between the implicit and the explicit representations are r...
متن کاملSSD: Smooth Signed Distance Surface Reconstruction
We introduce a new variational formulation for the problem of reconstructing a watertight surface defined by an implicit equation, from a finite set of oriented points; a problem which has attracted a lot of attention for more than two decades. As in the Poisson Surface Reconstruction approach, discretizations of the continuous formulation reduce to the solution of sparse linear systems of equa...
متن کاملA User-friendly Tool for Semi-automated Segmentation and Surface Extraction from Color Volume Data Using Geometric Feature-space Operations
Segmentation and surface extraction from 3D imaging data is an important task in medical applications. When dealing with scalar data such as CT or MRI scans, a simple thresholding in form of isosurface extraction is an often a good choice. Isosurface extraction is a standard tool for visualizing scalar volume data. Its generalization to color data such as cryosections, however, is not straightf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Graph. Forum
دوره 24 شماره
صفحات -
تاریخ انتشار 2005